Slides
- Lecture 1: Intro
- Lecture 2: R Intro
- Lecture 3: Data Visualization
- Lecture 4: Data Visualization (maps)
- Lecture 5: Different Types of Data
- Lecture 6: Data Visualization (by Rune Madsen)
- Lecture 7: Data Manipulation (split-apply-combine)
- Lecture 8: Data Manipulation (tidy data, regular expressions)
- Lecture 9: Data Gathering (web scraping)
- Lecture 10: Data Gathering (APIs, assignment 1 & rmarkdown)
- Lecture 11: Git, Github & R Markdown
- Lecture 12: Big Data in Economics
- Lecture 13: Statistical Learning: Overview
- Lecture 14: Statistical Learning: Supervised Learning
- Lecture 15: Text as Data (by Zoltan Fazekas)
- Lecture 16: Unsupervised Learning
- Lecture 17: Privacy and Ethics