Social Data Science

David Dreyer Lassen
UCPH ECON

Nov 4, 2015

In God we trust, all others must bring data

W. Edwards Dewing

Today: Big Data in Economics

But first: 3 slides on strategic data management and production

Strategic data management and production

- People / firms / governments do not always provide truthful and/or complete data
- Example: No penalty for lying in surveys but no reason not to either
- Political reasons for obscuring or inventing data: <u>Greece in EU</u>, Chinese economy
- Firms: Proprietary info, competition reasons, fooling customers and regulators (VW)

Strategic data management and production

- Individual demand for privacy (We return to this)
 - Could be instrumental:
 - lack of privacy decreases consumer surplus by better estimate of reservation price (e.g. Steering: Mac vs PC when ordering online)
 - Concerns about political issues
 - Or an objective in itself: Privacy as a political goal

Social desirability bias I

- Key concern in surveys, but more general problem:
 - What if people answer so as to conform with general notions of what's desirable?
 - Examples: Won't admit to not voting or having sexually transmitted diseases, exaggerates income
 - Reports buying healthy food vs unhealthy food
 - Important for asking/assessing sensitive questions

Social desirability bias II

- Why?
- Distinguish
 - a) self-deception
 - b) impression management
- Example: Scrape data from dating websites and link (hypothetically) to income data
 - Is there a correlation between beauty and income?
 (Yes, but not from such data)
 - Bias could be both (a) and (b)

Today: Big Data in Economics

David Dreyer Lassen
UCPH ECON
September 24, 2015

No agreed upon definition what Big Data is

- Large N?
- High frequency / much detail?
- Many different measurements?
- Based on what people do ('honest signals')
 - ctr surveys
 - Not always honest

- Different to different people/traditions
- To Americans, Danish register data is big data

Administrative data

- Denmark, Norway, Sweden
 - Population-wide
 - Ex: Know population 'by pressing Enter'
 - Most other countries: census (counting people), surveys, rough approximations
 - In DK, built on Central Person Registry number
 - System constructed for source taxation in 1960s, now used as ubiquitous identifier
- Why do some countries have CPR-like systems and some not?

Administrative data

Pros

- Often full population
- In DK: third party
 reported -> no reporting
 bias, no survey bias
- Very detailed, no survey fatigue
- Often very precise, since used for admin purposes

Cons

- No soft data (attitudes, expectations); can be linked to surveys
- Privacy concerns
- Restricted to what is collected for admin reasons, both type and frequency (e.g. annual)

Administrative data

- Lots of work in Danish econ utilizes register data
 - Taxation
 - Education
 - Health
 - Financial decisions
 - Labor market

- Combined with
 - Personality measures
 - Attitudes/political prefs from surveys
 - Expectations from surveys
 - Biological data (neuromeasures, genetics)
 - Data from experiments

'Big data'

Pros

- Often based on real decisions (as admin data), but more detail, e.g.
 auctions
- High frequency (e.g. wifi),
 high granularity ->
 almost large N
 ethnographic data
- Sometimes cheap/free

Cons

- No established protocol for collection
- Sometimes dubious quality, selection issues (both known/unknown)
- Start-up costs
- Even more privacy concerns
- Corporate gatekeepers-> bias in access

Characteristics of 'big data'

- Structured (row/column-style) vs. unstructured (images/sound)
- Temporally referenced (date, time, frequency)
- Geographically referenced (wifi, bluetooth, Google)
- Person identifiable (identify vs. distinguish individuals vs. not distinguish individuals)
 - Separate medium (e.g. phone) from owner

- Large-scale (N=1000) big data project
- Handed out smart phones to DTU freshmen
- Collected phone, SMS/text/email (not content), GPS, wifi, bluetooth data
- -> Where, when, with whom
- -> social networks

Phone locations 0500h Monday morning -> can predict where people at given time with 85% accuracy

10 min GPS

Example: peer effects in education economics

- Students allocated to study and social groups, called vector groups (randomly)
- Are there peer effects, i.e. are students' grades/health behavior/study behavior affected by the group?
- Literature: sometimes yes, sometimes no; very heterogeneous
- Why? Perhaps being allocated to group is not = to actually meeting / using group

Example: peer effects

- Think of allocation to group as intention to treat (similar to offering treatment)
- Interesting example: <u>Carrell et al, ECMA 2013</u>. Small groups, yes peer effects; large groups: no peer effects – WHY?
- Use phone to measure frequency of group members being together physically, measured by bluetooth
- Three parts: (i) yes they are more together; (ii) more together => work better together; (iii) peer effects?

Broader issue: Who meets, and how close are they?

- (This is Kristoffer's Master's thesis)
- Again: use bluetooth signals to measure meetings (duration, participants)
- Analyzes 3.1 mio meetings over two months
- Some results:
 - Women/women pairs -> closer
 - Facebook friends -> closer
 - Same study -> closer
 - Difference in beauty -> further apart
 - One overweight, one not -> further apart
- People who stand very close have fewer friends

Example: why phone data

- Phones as sociometers
- Many/most people carry phone with them all the time
- Would be IMPOSSIBLE to have people report in detail for every 10 min every day for a year
- For this project: tailored software, but realized that many apps collect detailed wifi-data without telling

Example: CSS

Heatmap of people with mobile devices on CSS (anonymous)

Example: David on Saturday

Example: David on Saturday

Example: how to measure consumer spending

Economically important:

- Indicator of health of economy
- Important for understanding individual responses to policy
- d.o. to economic shocks
- Important for consumer prices -> inflation -> adjustments of wages and transfers
- In developing countries: important for estimates of poverty, inequality

Example: consumer spending

- Traditional methods:
 - Consumer expenditure surveys (DK: forbrugsundersøgelsen)
 - Diary or scanner
 - Errors, selection
- Economists wanted access to individual spending data from Dankort for a long time
 - No luck

- Recently, Statistics
 Denmark got access to
 COOP-card data to measure inflation
 - To be made public soon,
 pretty good fit with existing
 measures (and much faster)
 - Nice idea, incentive compatible
 - Indep of payment type
 - But selection

Example: consumer spending

- Attempts in developing economics
 - Use smart phones as scanner or means of payment
 - what can we infer about individuals from smart phone use (dedicated users)
 - Selection into who has smart phones
 - But should be seen against other ways of collecting data

• Qs:

- How can we use smart phones to infer spending better?
- What kinds of economically interesting data can we collect via smartphones?

Statistical analysis of Big Data

- Many observations: what does statistical significance mean?
 - And what is practical relevance? Size effects
- Multiple testing problems? If big data generates many variables, why not run through them all to see what is significant?
 - Correct standard errors
- In some cases, 'eyeball econometrics' can be difficult
 - Need systematic approach

Statistical/machine learning

- Suppose you have no or very little theory to guide you
- OLS is not only linear, but also presumes some idea of what actually goes in there and how
- Varian's Titanic example: who survived the Titanic
 - Two variables: Class and age
 - Researcher decide / guess vs. data analysis yield most likely (decision tree, but lots more complicated -> Sebastian, later)
 - Einav, Levin: Econ should consider machine learning

Statistical analysis of Big Data

- But what if you have theory (or think you have)
 - e.g.<u>combine econometrics and machine</u><u>learning</u>
- Goes back to old debate in economics
 - Milton Friedman (1953): judge a model by its predictions, not its assumptions
 - Machine learning made for prediction not for hypothesis testing and theory (in)validation