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concepts

Cross validation: Split data in test and training data. Train model on
training data, test it on test data

Supervised Learning: Models designed to infer a relationship from
labeled training data.

· linear model selection (OLS, Ridge, Lasso)
· Classification (logistic, KNN, CART)

Unsupervised Learning: Models designed to infer a relationship from
unlabeled training data.

· PCA
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Cross Validation
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error

Statistical learning models are designed to minimize out of sample
error: the error rate you get on a new data set

Key ideas

· Out of sample error is what you care about
· In sample error < out of sample error
· The reason is overfitting (matching your algorithm to the data
you have)
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out of sample error (continuous variables)

Mean squared error (MSE):

1
n

n∑
i=1

(predictioni − truthi)2

Root mean squared error (RMSE):

√√√√ 1
n

n∑
i=1

(predictioni − truthi)2

Question: what is the difference?
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example: predicting age of death

library(”readr”)
gh.link = ”https://raw.githubusercontent.com/”
user.repo = ”johnmyleswhite/ML_for_Hackers/”
branch = ”master/”
link = ”05-Regression/data/longevity.csv”
data.link = paste0(gh.link, user.repo, branch, link)
df = read_csv(data.link)
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Smokes AgeAtDeath

1 75
1 72
1 66
1 74
1 69
1 65
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Let’s look at RMSE for different guesses of age of death

add_rmse = function(i){
df %>%

mutate(sq.error = (AgeAtDeath - i)^2) %>%
summarise(mse = mean(sq.error),

rmse = sqrt(mse),
guess = i)

}

df.rmse = 63:83 %>%
map_df(add_rmse)

8/85



6

8

10

12

65 70 75 80
guess

rm
se

9/85



df.rmse %>%
filter(rmse == min(rmse))

## # A tibble: 1 x 3
## mse rmse guess
## <dbl> <dbl> <int>
## 1 32.991 5.743779 73
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df %>%
summarise(round(mean(AgeAtDeath), 0))

## # A tibble: 1 x 1
## round(mean(AgeAtDeath), 0)
## <dbl>
## 1 73

11/85



out of sample error (discrete variables)

One simple way to assess model accuracy when you have discrete
outcomes (republican/democrat, professor/student, etc) could be
the mean classification error

Ave(I(y0 ̸= ŷ0))

But assessing model accuracy with discrete outcomes is often not
straightforward.

Alternative: ROC curves
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type 1 and type 2 errors
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test and training data

Accuracy on the training set (resubstitution accuracy) is optimistic

A better estimate comes from an independent set (test set accuracy)

But we can’t use the test set when building the model or it becomes
part of the training set

So we estimate the test set accuracy with the training set

Remember the bias-variance tradeoff
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cross validation

Why not just randomly dvidide the data into a test and training set?

Two drawbacks

1. The estimate of the RMSE on the test data can be highly
variable, depending on precisely which observations are
included in the test and training sets

2. In this approach, only the training data is used to fit the model.
Since statistical models generally perform worse when trained
on fewer observations, this suggests that the RMSE on the test
data may actually be too large

One very useful refinement of the test-training data approach is
cross-validation
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k-fold cross validation

1. Divide the data into k roughly equal subsets and label them
s = 1, ..., k.

2. Fit your model using the k− 1 subsets other than subset s
3. Predict for subset s and calculate RMSE
4. Stop if s = k, otherwise increment s by 1 and continue

The k fold CV estimate is computed by averaging the mean squared
errors (MSE1, ...,MSEk)

CVk =
1
k

k∑
i=1

MSEi

Common choices for k are 10 and 5.

CV can (and should) be used both to find tuning parameters and to
report goodness-of-fit measures.
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example

true_model = function(x){
2 + 8*x^4 + rnorm(length(x), sd = 1)

}
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generate data

df = data_frame(
x = seq(0, 1, length = 50),
y = true_model(x)

)
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x y

0.0000000 1.497808
0.0204082 2.131533
0.0408163 1.921105
0.0612245 2.886897
0.0816327 2.117326
0.1020408 2.319497
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fit models

We want to search for the correct model using a series of
polynomials of different degrees.

my_model = function(pol, data = df){
lm(y ~ poly(x, pol), data = data)

}
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fit a linear model

model.1 = my_model(pol = 1)

22/85



Table 3:

y

poly(x, pol) 13.624∗∗∗

(1.349)
Constant 3.731∗∗∗

(0.191)
N 50
R-squared 0.680
Adj. R-squared 0.673
Residual Std. Error 1.349 (df = 48)
F Statistic 101.968∗∗∗ (df = 1; 48)

∗∗∗p < .01; ∗∗p < .05; ∗p < .1
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add predictions

add_pred = function(mod, data = df){
data %>% add_predictions(mod, var = ”pred”)

}

df.1 = add_pred(model.1)
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x y pred

0.0000000 1.497808 0.4594252
0.0204082 2.131533 0.5929425
0.0408163 1.921105 0.7264597
0.0612245 2.886897 0.8599769
0.0816327 2.117326 0.9934941
0.1020408 2.319497 1.1270114
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finding the “best” model

# Estimate polynomial from 1 to 9
models = 1:9 %>%
map(my_model) %>%
map_df(add_pred, .id = ”poly”)
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poly x y pred

1 0.0000000 1.497808 0.4594252
1 0.0204082 2.131533 0.5929425
1 0.0408163 1.921105 0.7264597
1 0.0612245 2.886897 0.8599769
1 0.0816327 2.117326 0.9934941
1 0.1020408 2.319497 1.1270114
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choosing the best model

models.rmse = models %>%
mutate(error = y - pred,

sq.error = error^2) %>%
group_by(poly) %>%
summarise(

mse = mean(sq.error),
rmse = sqrt(mse)

) %>%
arrange(rmse)
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Which model is best?

poly rmse

9 0.7285253
8 0.7437169
7 0.7751253
6 0.7760149
5 0.7838361
4 0.7949836
3 0.8007723
2 0.8410190
1 1.3219606
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cross validation

gen_crossv = function(pol, data = df){
data %>%

crossv_kfold(10) %>%
mutate(
mod = map(train, ~ lm(y ~ poly(x, pol),

data = .)),
rmse.test = map2_dbl(mod, test, rmse),
rmse.train = map2_dbl(mod, train, rmse)

)
}
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gen cross validation data

set.seed(3000)
df.cv = 1:10 %>%
map_df(gen_crossv, .id = ”degree”)
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## # A tibble: 5 x 5
## degree .id mod rmse.test rmse.train
## <chr> <chr> <list> <dbl> <dbl>
## 1 1 01 <S3: lm> 1.4698002 1.310390
## 2 1 02 <S3: lm> 1.4291296 1.312430
## 3 1 03 <S3: lm> 1.4155343 1.311204
## 4 1 04 <S3: lm> 1.4696419 1.310855
## 5 1 05 <S3: lm> 0.7654701 1.371687

34/85



df.cv.sum = df.cv %>%
group_by(degree) %>%
summarise(

m.rmse.test = mean(rmse.test),
m.rmse.train = mean(rmse.train)

)
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degree var value

1 m.rmse.test 1.3691875
1 m.rmse.train 1.3146356
2 m.rmse.test 0.8334279
2 m.rmse.train 0.8376921
3 m.rmse.test 0.8898723
3 m.rmse.train 0.7949651
4 m.rmse.test 0.8644459
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Supervised Learning
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introduction

Supervised learning: Models designed to infer a relationship from
labeled training data.

Labelled data: For each observation of the predictor variables,
xi, 1, ...,n there is an associated response measurement yi

· When the response measurement is discrete: classifiation
· when the response is continuous: regression
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regularization

The problem with overfitting comes from our model being too
complex

Complexity: models are complex when the number or size of the
coefficients is large

One approach: punish the model for doing this

This approach is called regularization
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ridge and lasso regression

Two popular models build on this approach: Ridge and Lasso

The approach is similar: include a loss function in the OLS
minimization problem to prevent overfitting

n∑
i=1

(yi − β0 −
p∑
j=1

bjxij)2 + LOSS

· Ridge uses the L2 norm: α
∑p

j=1 β2j
· Lasso uses the L1 norm: α

∑p
j=1 |βj|

This turns out to be very important
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L1 regularization gives you sparse estimates (and therefore performs
some form of variable selection)
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back to our example…

lm.fit = my_model(pol = 1)
l2.norm = sum(coef(lm.fit)^2)
l1.norm = sum(abs(coef(lm.fit)))
print(paste0(”l2.norm is ”, l2.norm))

## [1] ”l2.norm is 199.539437019912”

print(paste0(”l1.norm is ”, l1.norm))

## [1] ”l1.norm is 17.3549167871978”
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fitting lasso/ridge models

Regularization methods are implemented in R in the glmnet
package (although it might also be worth checking out the newer
caret and mlr packages)

library(”glmnet”)

alpha controls the norm.
alpha = 1 is the Lasso penalty,
lasso = 0 is Ridge
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x = poly(df$x, 9)
y = df$y

out = glmnet(x, y)
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glmnet output

The output contains three columns

· Df: tells you how many coefficients in the model ended up
being nonzero

· %Dev: essentially a R2 for the model
· Lambda: the loss parameter

Because Lambda controls the values that we get from the model, it
is often referred to as a hyperparameter

Large Lambda: heavy penalty for model complexity
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picking lambda

Which Lambda minimizes RMSE in our test data?

cal_rmse = function(prediction, truth){
return(sqrt(mean( (prediction - truth) ^2)))

}

performance = function(i){
prediction = predict(glmnet.fit,

poly(test.df$x, 9),
s = i)

truth = test.df$y
RMSE = cal_rmse(prediction, truth)
return( data.frame(lambda = i,

rmse = RMSE))
}
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Create test and training data

n = nrow(df)
indices = sort(sample(1:n, round(.5*n)))
training.df = df[indices, ]
test.df = df[-indices, ]
glmnet.fit = glmnet(poly(training.df$x, 9),

training.df$y)
lambdas = glmnet.fit$lambda

perf.df = lambdas %>%
map_df(performance)
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best.lambda = perf.df %>%
filter(lambda == min(lambda))

glmnet.fit = glmnet(poly(df$x, 9), df$y)
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coef(glmnet.fit, s = best.lambda$lambda)

## 10 x 1 sparse Matrix of class ”dgCMatrix”
## 1
## (Intercept) 3.597608
## 1 411.377377
## 2 225.909396
## 3 66.361665
## 4 8.249294
## 5 .
## 6 .
## 7 .
## 8 .
## 9 .
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conclusion

The Lasso model ended up using only 4 nonzero coefficients even
though the model had the ability to use 9

Selecting a simpler model when more complicated models are
possible is exactly the point of regularization
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Classification
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introduction

When we are trying to predict discrete outcomes we are effictively
doing classification

We saw this yesterday witht the logit example

Now a different approach: Classification and Regression Trees
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classification and regression trees (cart)

Decision trees can be applied to both regression and classification
problems

They are intuitive, but run the danger of overfitting (what happens if
you grow the largest possible decision tree for a given problem?)

Therefore, people usually use extensions such as random forests
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cart

Advantages

Easy to explain

Mimic the mental model we often use to make decisions

Can be displayed graphically

Main disadvantage

Performance
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cart example: classifying cuisine given ingredients

library(”jsonlite”)
food = fromJSON(”~/git/sds_summer/data/food.json”)
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preparation i

food$ingredients = lapply(food$ingredients,
FUN=tolower)

food$ingredients = lapply(food$ingredients,
FUN=function(x)

gsub(”-”, ”_”, x))
food$ingredients = lapply(food$ingredients,

FUN=function(x)
gsub(”[^a-z0-9_ ]”, ””, x))
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prepartion ii

library(”tm”)
combi_ingredients = c(Corpus(VectorSource(food$ingredients)),

Corpus(VectorSource(food$ingredients)))
combi_ingredients = tm_map(combi_ingredients, stemDocument,

language=”english”)
combi_ingredientsDTM = DocumentTermMatrix(combi_ingredients)
combi_ingredientsDTM = removeSparseTerms(combi_ingredientsDTM, 0.99)
combi_ingredientsDTM = as.data.frame(
as.matrix(combi_ingredientsDTM))

combi = combi_ingredientsDTM
combi_ingredientsDTM$cuisine = as.factor(
c(food$cuisine, rep(”italian”, nrow(food))))
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trainDTM = combi_ingredientsDTM[1:nrow(food), ]
testDTM = combi_ingredientsDTM[-(1:nrow(food)), ]
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estimate the model

library(”rpart”)
set.seed(1)
model = rpart(cuisine ~ ., data = trainDTM,

method = ”class”)
cuisine = predict(model, newdata = testDTM,

type = ”class”)
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decision tree

tortilla < 0.5

parmesan >= 0.5

soy >= 0.5

masala >= 0.5

cilantro < 0.5

oliv >= 0.5

italian

chinese

indian

italian southern

mexican

mexican

yes no
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random forests

Random Forest algorithms are so-called ensemble models

This means that the model consists of many smaller models

The sub-models for Random Forests are classification and
regression trees
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bagging

Breiman (1996) proposed bootstrap aggregating – “bagging” – to to
reduce the risk of overfitting.

The core idea of bagging is to decrease the variance of the
predictions of one model, by fitting several models and averaging
over their predictions

In order to obtain a variety of models that are not overfit to the
available data, each component model is fit only to a bootstrap
sample of the data
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random forest intution

Random forests extended the logic of bagging to predictors.

This means that, instead of choosing the split from among all the
explanatory variables at each node in each tree, only a random
subset of the explanatory variables are used

If there are some very important variables they might overshadow
the effect of weaker predictors because the algorithm searches for
the split that results in the largest reduction in the loss function.

If at each split only a subset of predictors are available to be chosen,
weaker predictors get a chance to be selected more often, reducing
the risk of overlooking such variables
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Jones & Linder. 2015.
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Unsupervised Learning
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supervised vs unsupervised

Supervised

You have an outcome Y and some covariates X
Unsupervised

You have a bunch of observations X and you want to understand the
relationships between them.

You are usually trying to understand patterns in X or group the
variables in X in some way
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principal components analysis

You have a set of multivariate variables X1, ..., Xp

· Find a new set of multivariate variables that are uncorrelated
and explain as much variance as possible.

· If you put all the variables together in one matrix, find the best
matrix created with fewer variables (lower rank) that explains
the original data.

The first goal is statistical and the second goal is data compression.
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example: building a market index

library(”readr”)
gh.link = ”https://raw.githubusercontent.com/”
user.repo = ”johnmyleswhite/ML_for_Hackers/”
branch = ”master/”
link = ”08-PCA/data/stock_prices.csv”
data.link = paste0(gh.link, user.repo, branch, link)
df = read_csv(data.link)
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Date Stock Close

2011-05-25 DTE 51.12
2011-05-24 DTE 51.51
2011-05-23 DTE 51.47
2011-05-20 DTE 51.90
2011-05-19 DTE 51.91
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market index

Let’s reduce the 25 stocks to 1 dimension and let’s call that our
market index

Dimensionality reduction: shrink a large number of correlated
variables into a smaller number

Can be used in many different situations: when we have too many
variables for OLS, for unsupervised learning, etc.
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library(”tidyr”)
df.wide = df %>% spread(Stock, Close)
df.wide = df.wide %>% na.omit
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pca

pca = princomp(select(df.wide, -Date))
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creating market index

market.index = predict(pca)[, 1]
market.index = data.frame(
market.index = market.index,
Date = df.wide$Date)
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market.index Date

28.24125 2002-01-02
28.16625 2002-01-03
28.07273 2002-01-04
28.30203 2002-01-07
27.62799 2002-01-08
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validation

Question: How do we validate our index?

One suggestion: we can compare it to Dow Jones
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library(”lubridate”)
link = ”08-PCA/data/DJI.csv”
data.link = paste0(gh.link, user.repo, branch, link)
dj = read_csv(data.link)
dj = dj %>%
filter(ymd(Date) > ymd(’2001-12-31’)) %>%
filter(ymd(Date) != ymd(’2002-02-01’)) %>%
select(Date, Close)

market.data = inner_join(market.index, dj)
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market.index Date Close

28.24125 2002-01-02 10073.40
28.16625 2002-01-03 10172.14
28.07273 2002-01-04 10259.74
28.30203 2002-01-07 10197.05
27.62799 2002-01-08 10150.55
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market.data = market.data %>%
mutate(

market.index = scale(market.index * (-1)),
Close = scale(Close))

market.data = market.data %>%
gather(index, value, -Date)
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