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In	God	we trust,
all	others must	bring	data

W.	Edwards	Dewing
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Today:
1.	Empirical design
2.	data	generating process
3.	modes	of	collection

standard	vs	big data;	examples
4.	strategic data	provision



roadmap

• Different data	for	different questions
• Theory and	empirics,	forecasting and	
hypothesis testing

• Effects of	causes vs.	Causes of	effects
• Data	generating process
• Modes	of	data	collection – pros and	cons
• Strategic	data	management	and	data	
production

Different	types	of	data 4



Different data	for	different questions
or

Different questions for	different data

Sometimes possible to	separate	data	collection process
from	underlying data	generating process – and	
sometimes not

Fundamental	difference	between what people do	and	
what they say they do
‘cheap talk’	/	‘put	your money where your mouth is’	/	
honest/costly signaling
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What is	your question,	again?
1. Research	question from	

theory
2. Ideal	empirical design
3. Feasible empirical

design	/	collection
4. Results
5. Adjustment of	

theory/question/design
6. New	results
7. …

A. What	data	do	we	have
B. What	question	can	they	

answer
C. Research	question
D. Results
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All	models	are wrong –
but	some are useful

Two key goals
1. Forecasting:	individual behavior,	policy	

consequences,	voting,	Champions	League,	
grades	…
Data	science	/	machine learning (but	also
macroeconomics)

2. Hypothesis testing,	derived from	theory
´Traditional’	social	science	
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1. Forecasting
• Example:	Bank	wants to	forecast non-payment on	loans
(P_d:	probability of	default)

• Couldn’t care less about theory
• Rough	”Data	Science”:	 try to	predict from	all	available
data

• Suppose we find	that birth weight predicts default
– Bank	is	happy,	better fit (defer ethics etc)
– Policy:	does investing in	pre-natal care reduce defaults?

• In	practice:	 set	of	predictors typically taken from	
(some)	theory,	even if	casual

• Complications:	if	customers know	that P_d depends on	
birth weight,	would/should they disclose it?	What if	
loans only to	disclosers?	Would they tell the	truth?
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2.	Hypothesis testing
• Theory (rational	choice,	sociology,	biology,	
common sense,	…)	posits effect of	X	on	Y
A. Selection/type	theory:	People	who are impatient

cannot defer immediate pleasures ->	smoke and	
drink	while pregnant ->	gives	birth sooner.	If	
impatient parents ->	impatient children (whether by	
nature	or	nurture),	we have	an	explanation.

B. Biological theory:	low birth weight affects brain
development and	neurological wiring for	patience.

• If	(A),	little role for	policy;	also,	both can be true	
at	same	time

• How	to	distinguish:	exogenous shock to	
birthweight,	but	ethically tricky	...
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Goodhart’s law

• Most	popular:	“When	a	measure	becomes	a	
target,	it	ceases	to	be	a	good	measure.”

• What he wrote:	“Any	observed	statistical	
regularity	will	tend	to	collapse	once	pressure	
is	placed	upon	it	for	control	purposes.”
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Targets	and	Measures

• You cannot be told	how your bank	constructs
your P_d.	Why?
– Goodhart’s law:	people will attempt to	
outmaneuver measure

– (thought)example:	spending on	shoes good
indicator of	account overdraft ->	shoe lovers will
have	others buy for	them,	ceases to	be a	good
measure

Different	types	of	data 12



Case	of	Google	Flu

• Google	Flu:	web	searches for	Flu symptoms	
predicted actual flu cases	

• By-product of	Google’s main service
• But	from	2010,	not	so	well:	overestimated
actual flu cases,	partly as	result of	autosuggest
feature,	partly becausemodel	was overfitted
(we’ll return to	that)

• Best	predictor:	number of	cases	past week
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roadmap

• Different data	for	different questions
• Theory and	empirics,	forecasting and	
hypothesis testing
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Effects of	causes
vs.

Causes of	effects

Different questions
• Effects of	causes:	intervention,	what is	effect
of	policy	X	on	outcomeY

• Causes of	effects:	Why does Z	occur?
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Effects of	causes
(forward	causal questions)

• Narrow questions,	sometimes (but	not	always)	
policy	interventions
– Effect of	tax change on	behavior
– Effect of	regulation on	risk taking
– Effect of	schooling on	earnings
– Effect of	smoking	on	lung cancer	propensity
– Effect of	public	health on	schooling in	Africa
– …

• Often,	but	not	always,	amenable	to	treatments/	
randomization/experimentation
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Causes of	effects
(reverse causal inference)

• Much harder,	but	often more	interesting
–Why do	some people smoke?
–What are the	causes of	democratization?
–Why do	some people pursue a	PhD why others
drop	out	after primary school?

–Why did	Greece (almost)	go	bankrupt?
• Tensions	with	”effects of	causes”	– search for	
causes sometimes derided as	‘party	chatter’
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What is	the	data	generating process?

Observational:	endogenousdecisions,	researcher	
passive	collector of	data
Randomization:	treatment-control
(Some)	exogeneity:	policy	interventions,	sometimes
with	comparisons,	researchers	sometimes involved

Important:	more	data	does not	give	better
result/more	precision if estimator is	biased
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Randomized	experiments
• Distinguish
– Lab	experiments:	traditionally	computer-based	in	
econ,	but	also	eye	tracking/brain	images	
(fMRI)/physiological

– Survey	experiments:	assign	survey	respondents	to	
different	frames/treatments/primings,	e.g.	have	
SocDems and	Liberals	say	same	thing	and	look	at	
support

– Field	experiments:	experimental	control	in	the	real	
world,	e.g.	banks	charging	different	rates	to	learn	
about	mobility	of	customers;	interventions	against	
teacher	absenteeism	in	India;	…)
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Randomized	experiments

• Distinguish
– Natural	experiments
(weather	induced:	effects	of	poverty	on	violence,	
randomization	of	names	on	election	ballots,	…)

– Quasi-experiments
(effects	of	change	in	policy;	effect	of	tax	reform	on	
tax	planning;	effect	of	immigrant	allocation	on	
crime)

• Throughout:	exogenous	(outside	of	the	
individual)	change

Different	types	of	data 21



Randomized	experiments

• Large,	important	current	debate	in	(development)	
economics

• CofE:	what	are	effects	of	penalties	on	teachers’	
absence	in	Indian	village	schools	– evidence	from	
randomized	experiments

• Randomly	selected	teachers	get	harsh	penalty	for	
no-shows	->	difference	in	absenteeism	causal	
effect of	penalty

• (Broader	EofC Q:	why	is	education	sector	in	rural	
India	so	inefficient?)
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Randomized	experiments

• Strong	on	internal	validity:	from	
randomization	any effect	on	absenteeism	is	
from	harsher	penalties;	good	for	testing	
theory

• Weak(er)	on	external	validity	– would	effect	
be	similar	in	Africa?	Would	effect	from	lab	
work	outside	lab?	Why,	why	not?

• (compare:	medicine	works	in	similar	ways	
across	locations)
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Randomized	experiments

• Challenges
– Limits	to	what	can	be	studied	by	experimentation
( ethics;	law;	feasibility)	

– Funding	(field	experiments	expensive,	survey	exp
less	so)

– Often	participation	constraint	– voluntary	
participants’	gain	>=	0	or	no	incentive

– Subjects	leave	for	various	(systematic)	reasons
– Large-scale	randomization	can	be	hard	in	field	
experiments
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Observational	data

• Generated	without	experimental	or	
exogenous	intervention

• Typically	reveals	correlations	or	descriptive	
patterns	that	can	be	interesting	in	themselves
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Example:	Inequality
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Observational	data

• Generated	without	experimental	or	
exogenous	intervention

• Typically	reveals	correlations	or	descriptive	
patterns	that	can	be	interesting	in	themselves
– Are	in	themselves	silent	about	causality
– Theory	may	be	provide	structure	to	learn	about	
causal	mechanism	under	strong	assumptions

– May	conflate	correlation	and	causality
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Observational	data

• Exple:	Does	being	in	private	schools	affect	grades
– Classic:	Catholic	schools	and	grades	in	US
– Collect	attendance	and	grades	->	run	regression

• But:	suppose	some	parents	are	more	focused	on	
schooling	than	others
– Send	kids	to	private	school	more
– More	involved	in	school	+	homework

• What	do	higher	grades	measure?
– Effect	of	private	school	OR	effect	of	involved	parents?
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Observational	data

• What	to	do?
– Assign	kids/parents	randomly	to	private	schools?

• More	complicated
–Waiting-list	experiment	design:	people	who	sign	
up	reveal	themselves	as	school	interested,	
compare	grades	between	those	in	program	and	on	
waiting	list	->	much	narrower	design

– Modeling	(US	case):	use	fact	that	Catholics	are	
much	more	likely	to	choose	Catholic	schools
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Modes	of	data	collection
• (Ethnographic	/	participant	observer)
• Survey
– Interview	survey	(in	person),	phone	survey,	internet	
survey,	…

• Administrative	data
– Used	for	administrative	purposes
– Some	countries:	census,	tax	return
– DK:	CPR-registry	based

• (Primary	collection:	 texts,	counting)
• “Big	data”:	in	social	sciences	typically	a	by-product	of	
digital	information
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Modes	of	data	collection

• Note:	survey,	admin	data,	big	data	can	all	have	
randomized	/	exogenous	elements	or	be	
purely	observational

• Often	in	Lab/field	experiments:	ask	about	
income,	education	etc – but	may	be	biased

• Sometimes:	combine	experimental	data	with	
admin	or	big	data	(but	rare)
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Ethnographic

• Pros
– Attempt	to	understand	
situations	from	
participants’	perspective

– Very	detailed	
observations	(e.g.	
dynamics	at	a	meeting:	
who	speaks	when,	who	
listens,	who	nods	off	and	
flirts	etc)

• Cons
– Very	difficult	to	
generalize	(if	even	the	
goal)

– Typically	very	small	n,	
not	for	stats	

– Hard	to	reproduce	/	
replicate

Different	types	of	data 33



Surveys
• Pros

– Can	be	cheap
– Elicit	info	on	attitudes,	

beliefs,	expectations
– Necessary	when	no	other	

means	exist
– Combine	with	open-ended	

info
– Easily	anonymized (firms;	

China)

• Cons
– Can	be	expensive
– Non-random	samples,	

sometimes	very	much	so	
(paid	surveys)

– Cheap	talk
– Diverse	interpretations	

(e.g.	1-10	scales,	Maasai
example)

– Very	different	quality:	
interview	vs.	internet

– Not	full	researcher	control:	
Interviewer	completions
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Administrative	data

• Denmark,	Norway,	Sweden
– Population-wide	
– Ex:	Know	population	‘by	pressing	Enter’

• Most	other	countries:	census	(counting	people),	surveys,	rough	
approximations

– In	DK,	built	on	Central	Person	Registry	number
– System	constructed	for	source	taxation	in	1960s,	now	used	
as	ubiquitous	identifier

• Why	do	some	countries	have	CPR-like	systems	and	
some	not?

Big	Data	in	Economics



Administrative	data

• Pros
– Often	full	population
– In	DK:	third	party	
reported	->	no	reporting	
bias,	no	survey	bias

– Very	detailed,	no	survey	
fatigue

– Often	very	precise,	since	
used	for	admin	purposes

• Cons
– No	soft	data	(attitudes,	
expectations);	can	be	
linked	to	surveys

– Privacy	concerns
– Restricted	to	what	is	
collected	for	admin	
reasons,	both	type	and	
frequency	(e.g.	annual)

Big	Data	in	Economics



Administrative	data

• Lots	of	work	in	Danish	
econ	utilizes	register	
data
– Taxation
– Education
– Health
– Financial	decisions
– Labor	market

• Combined	with
– Personality	measures
– Attitudes/political	prefs
from	surveys

– Expectations	from	
surveys

– Biological	data	(neuro-
measures,	genetics)

– Data	from	experiments

Big	Data	in	Economics



Viva la revolución?
Harnessing	the	Data	Revolution

for	Good

Human	Development	Report	Office



Big data
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No	agreed	upon	definition	what	
Big	Data	is

• Large	N?
• High	frequency	/	much	
detail?

• Many	different	
measurements?

• Based	on	what	people	
do	(‘honest	signals’)
– ctr surveys
– Not	always	honest

• Different	to	different	
people/traditions

• To	Americans,	Danish	
admin/register	data	is	
big	data

Big	Data	in	Economics



‘Big	data’

• Pros
– Often	based	on	real	
decisions (as	admin	
data),	but	more	detail,	
e.g.	auctions

– High	frequency (e.g.	
wifi),	high	granularity	->	
almost	‘large	N	
ethnographic	data’

– Sometimes	cheap/free

• Cons
– No	established	protocol	
for	collection

– Sometimes	dubious	
quality,	selection	issues	
(both	known/unknown)

– Start-up	costs	
– Even	more	privacy	
concerns

– Corporate	gatekeepers	
->	bias	in	access	
(Facebook,	Google)

Big	Data	in	Economics



Characteristics	of	‘big	data’

• Structured	(row/column-style)	vs.	
unstructured	(images/sound)

• Temporally	referenced	(date,	time,	frequency)
• Geographically	referenced	(wifi,	bluetooth,	
Google)

• Person	identifiable	(identify	vs.	distinguish	
individuals	vs.	not	distinguish	individuals)
– Separate	medium	(e.g.	phone)	from	owner

Big	Data	in	Economics



Example:	Social	Fabric

• Large-scale	(N=1000)	big	data	project
• Handed	out	smart	phones	to	DTU	freshmen
• Collected	phone,	SMS/text/email	(not	
content),	GPS,	wifi,	bluetooth data

• ->	Where,	when,	with	whom
• ->	social	networks

Big	Data	in	Economics



Why	phone	data

• Phones	as	sociometers
• Many/most	people	
carry	phone	with	them	
all	the	time

• Would	be	IMPOSSIBLE	
to	have	people	report	in	
detail	for	every	10	min	
every	day	for	a	year

• For	this	project:	tailored	
software,	but	realized	
that	many	apps	collect	
detailed	wifi-data	
without	telling

• Concern:	take-up	of	
phones

Big	Data	in	Economics



Example:	Social	Fabric

Big	Data	in	Economics

Phone	 locations	0500h	Monday	morning	 ->	can	predict	where	people	at	given	
time	with	85%	accuracy



Example:	Social	Fabric

Big	Data	in	Economics

10	min	GPS wifi



Example:	Social	Fabric
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Example:	peer	effects	in	
education	economics

• Students	allocated	to	study	and	social	groups,	
called	vector	groups	(randomly)

• Are	there	peer	effects,	i.e.	are	students’	
grades/health	behavior/study	behavior	
affected	by	the	group?

• Literature:	sometimes	yes,	sometimes	no;	very	
heterogeneous

• Why?	Perhaps	being	allocated	to	group	is	not	
=	to	actually	meeting	/	using	group

Big	Data	in	Economics



Example:	peer	effects
• Think	of	allocation	to	group	as	intention	to	treat	
(similar	to	offering	treatment)

• Interesting	example:	Carrell et	al,	ECMA	2013.	
Small	groups,	yes	peer	effects;	large	groups:	
no/negative	peer	effects	– WHY?

• Use	phone	to	measure	frequency	of	group	
members	being	together	physically,	measured	by	
bluetooth

• Three	parts:	(i)	yes	they	are	more	together;	(ii)	
more	together	=>	work	better	together;	(iii)	peer	
effects?
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Broader	issue:	Who	meets,	and	how	
close	are	they?

• Again:	use	bluetooth signals	to	measure	meetings	
(duration,	participants)

• Analyzes	3.1	mio meetings	over	two	months
• Some	results:
– Women/women	pairs	->	closer
– Facebook	friends	->	closer
– Same	study	->	closer
– Difference	in	beauty	->	further	apart
– One	overweight,	one	not	->	further	apart

• People	who	stand	very	(too)	close	to	others	have	
fewer	friends	(!?)

Big	Data	in	Economics



Prediction	vs	causality

• Measure	class	attendance	from	phone	data	
(wifi/GPS/bluetooth)
– Either:	construct	clusters	at	slots	known	as	
teaching	time;	or:	use	admin	info	on	class	
locations	and	construct	GPS	overlays

• Facebook	activity

• Predict	grades

Big	Data	in	Economics
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Prediction	vs	causality

Attendance	->	grades/comprehension
– People	who	attend	more	learn	more
– People	who	spend	less	time	on	Facebook	have	more	
time	for	studying

AND/OR

Grades/comprehension	->	attendance
– Find	courses	hard	->	stay	at	home,	more	tempted	by	
Facebook

Big	Data	in	Economics



Example:	CSS

Big	Data	in	Economics

Heat	map	of	people	with	mobile	devices	on	CSS	(anonymous)



Example:	David	on	Saturday

Big	Data	in	Economics



Example:	David	some	Saturday

Big	Data	in	Economics
Flea	market



Example:	how	to	measure	
consumer	spending

• Economically	important:
– Indicator	of	health	of	economy
– Important	for	understanding	individual	responses	to	
policy

– d.o.	to	economic	shocks
– Important	for	consumer	prices	->	inflation	->	adjustments	
of	wages	and	transfers

– In	developing	countries:	important	for	estimates	of	
poverty,	inequality

Big	Data	in	Economics



Example:	consumer	spending
• Traditional	methods:	

– Consumer	expenditure	
surveys	(DK:	
forbrugsundersøgelsen)

– Diary	or	scanner
– Errors,	selection

• Economists	wanted	
access	to	individual	
spending	data	from	
Dankort for	a	long	time
– No	luck

• Recently,	Statistics	
Denmark	got	access	to	
COOP-card	data	to	
measure	inflation
– To	be	made	public	soon,	

pretty	good	fit	with	
existing	measures	(and	
much	faster)

– Nice	idea,	incentive	
compatible

– Indep of	payment	type
– But	selection?

Big	Data	in	Economics



Example:	consumer	spending

• Attempts	in	developing	economics
– Use	smart	phones	as	scanner	or	means	of	payment
– what	can	we	infer	about	individuals	from	smart	phone	
use	(dedicated	users)

– Selection	into	who	has	smart	phones
– But	should	be	seen	against	other	ways	of	collecting	data

• Qs:
– How	can	we	use	smart	phones	to	infer	spending	better?
– What	kinds	of	economically	interesting	data	can	we	
collect	via	smartphones?

Big	Data	in	Economics



Statistical	analysis	of	Big	Data

• Many	observations:	what	does	statistical	
significance	mean?
– And	what	is	practical	relevance?	Size	effects

• Multiple	testing	problems?	If	big	data	generates	
many	variables,	why	not	run	through	them	all	to	
see	what	is	significant?
– Correct	standard	errors

• In	some	cases,	‘eyeball	econometrics’	can	be	
difficult
– Need	systematic	approach

Big	Data	in	Economics



Statistical/machine	learning

• Suppose	you	have	no	or	very	little	theory	to	guide	
you

• OLS	is	not	only	linear,	but	also	presumes	some	
idea	of	what	actually	goes	in	there	and	how

• Varian’s	Titanic	example:	who	survived	the	Titanic
– Two	variables:	Class	and	age
– Researcher	decide	/	guess	vs.	data	analysis	yield	most	
likely	(decision	tree,	but	lots	more	complicated	->	
Sebastian,	later)

– Einav,	Levin:	Econ	should	consider	machine	learning

Big	Data	in	Economics



Statistical	analysis	of	Big	Data

• But	what	if	you	have	theory	(or	think	you	
have)	– e.g.combine econometrics	and	
machine	learning

• Goes	back	to	old	debate	in	economics
– Milton	Friedman	(1953):	 judge	a	model	by	its	
predictions,	not	its	assumptions

– Machine	learning	made	for	prediction	not	for	
hypothesis	testing	and	theory	(in)validation

Big	Data	in	Economics



roadmap

• Different data	for	different questions
• Theory and	empirics,	forecasting and	
hypothesis testing

• Effects of	causes vs.	Causes of	effects
• Data	generating process
• Modes	of	data	collection – pros and	cons
• Strategic	data	management	and	data	
production
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Strategic	data	management	and	
production

• People	/	firms	/	governments	do	not	always	
provide	truthful	and/or	complete	data

• Example:	No	penalty	for	lying	in	surveys	– but	
no	reason	not	to	either

• Political	reasons	for	obscuring	or	inventing	
data:	Greece	in	EU,	Chinese	economy

• Firms:	Proprietary	info,	competition	reasons,	
fooling	customers	and	regulators	(VW)

Big	Data	in	Economics



Strategic	data	management	and	
production

• Individual	demand	for	privacy	(We	return	to	
this)
– Could	be	instrumental:	
• lack	of	privacy	decreases	consumer	surplus	by	better	
estimate	of	reservation	price	(e.g.	Steering:	Mac	vs PC	
when	ordering	online)
• Concerns	about	political	issues

– Or	an	objective	in	itself:	Privacy	as	a	political	goal
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Social	desirability bias	I

• Key concern in	surveys,	but	more	general	
problem:
What if	people answer so	as	to	conformwith	
general	notions of	what’s desirable?
– Examples:	Won’t admit to	not	voting or	having
sexually transmitted diseases,	exaggerates income

– Reports	buying healthy food vs unhealthy food
– Important for	asking/assessing sensitive	questions
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Social	desirability bias	II

• Why?
• Distinguish

a) self-deception
b) impression management

• Example:	What do	you value most	in	a	
potential	mate?	
– People	say:		"kind	and	understanding”
– From	dating	data:	physical attractiveness,	status
– Bias	could be both (a)	and	(b)

Big	Data	in	Economics


